
Projection: Mapping 3-D to 2-D

Our scene models are in 3-D space and images are 2-D
• so we need some way of projecting 3-D to 2-D

The fundamental approach: planar projection
• first, we define a plane in 3-D space

– this is the image plane (or film plane)
• then project scene onto this plane
• and map to the window viewport

Need to address two basic issues
• how to define plane
• how to define mapping onto plane

Orthographic Projection

Arguably the simplest projection
• image plane is perpendicular to one of the coordinate axes
• project onto plane by dropping that coordinate
• (x, y, z) → (x, y) or → (x, z) or → (y, z)

OpenGL — glOrtho(left, right, bottom, top, near, far)
• assumes image plane perpendicular to z axis

– in other words, it’s the xy-plane
• projects points (x, y, z) → (x, y)
• also defines viewport mapping

– defines rectangle on xy-plane
– this gets mapped to window left

right

top

bottom

Perspective Projection

But we naturally see things in perspective
• objects appear smaller the farther away they are
• lenses bend (and hence focus) incoming light
• in orthographic projection, all rays are parallel

We’ve been using pinhole camera models
• draw rays thru focal point and points on object
• some of these lines will intersect the image plane
• this defines our projection into 2-D
• all points along a ray project to same point
• can project lines by projecting endpoints

d

The Canonical Camera Configuration

Want to derive perspective transformation
• in particular, a matrix representation

First, we fix a canonical camera
• focal point at origin
• looking along z axis
• image plane parallel to xy plane
• located distance d from origin

– called the focal length

x

y

z

d

focal
point image

plane

Effect of Perspective Projection on Points

We project points thru the line connecting them to the focal point
• given a point, we want to know where this line hits the image plane

y

z
focal point

(0, 0, 0)

image plane
z=d object point

(x, y, z)

Effect of Perspective Projection on Points

We project points thru the line connecting them to the focal point
• given a point, we want to know where this line hits the image plane

Can easily compute this using similar triangles

y

z
focal point

(0, 0, 0)

image point
((d/z)x, (d/z)y, d)

object point
(x, y, z)

Perspective Projection as a Transformation

This homogeneous matrix performs perspective projection

It’s operation on any given point is

1 0 0 0 
 0 1 0 0 =  0 0 1 0
 10 0 0  d

P

1 0 0 0    
    0 1 0 0     =   0 0 1 0  
    10 0 0 1       

xx
yy
zz
z

d d

Perspective Projection as a Transformation

This homogeneous matrix performs perspective projection

And when we do the homogeneous division
• we get exactly the point we want
• only keep x and y coordinates

  
       

    ⇒        
     1  

d
xx z

y d
yz z

z dd

1 0 0 0 
 0 1 0 0 =  0 0 1 0
 10 0 0  d

P

Completing the Projection

The image plane itself is infinite
• must map a rectangular region of it to the viewport
• defined by (left, right, top, bottom) coordinates

We also customarily define near & far clipping planes
• these are expressed as distances from the viewpoint
• they should always be positive
• nothing nearer than near will be drawn

– don’t want to draw things behind the image plane
• nothing further than far will be drawn
• distance far-near should be small

– use fixed precision numbers to represent depth between them

OpenGL — glFrustum(left, right, bottom, top, near, far)

More Convenient Perspective Specification

Could always use glFrustum(left, right, bottom, top, near, far)
• this is certainly sufficient
• but it’s inconvenient

Generally want to use: gluPerspective(fovy, aspect, near, far)
• viewport is always centered about z axis
• specifies the field of view along the y axis

– the angle θ made by the sides of the frustum
• and the aspect ratio of the viewport

– this is just (width / height)

y

z

θ

Viewing Volumes

The sides of the viewport define an infinite pyramid
• focal point at apex, extending outward through space

Adding in the clipping planes, we get a truncated pyramid
• this is called a frustum

Can think of this as the viewing volume
• nothing outside of it is visible
• projection warps this to a rectangular prism

Transformation for Viewing Volumes

max min max min

max min max min

a
b

z z z z
z z z z

0 0 0 
 0 0 0 

= + −2 
0 0 − − 

 0 0 1 0 

P

Z

Zmin

Zmax

Z

1-1

Preserves
depth order

We Need More General Cameras

So far, we’ve assumed a “canonical” camera configuration
• focal point at the origin
• image plane parallel to xy-plane

This is pretty limited, we want greater flexibility
• deriving general projection matrices is painful
• but we can transform world so camera is canonical
• typically called the viewing transformation

Naturally, there are several ways of setting this up
• we’ll focus on the OpenGL supported mechanism
• the one in the book is gratuitously complex

Specifying General Camera Configurations

First, we want to allow focal point to be anywhere in space
• call this position lookFrom, or just from

Next, we need to specify the orientation of the camera
• define what it’s pointing at: lookAt

– lookAt−lookFrom will define the axis of projection
• define vertical axis of image: vUp

– essentially a twist parameter about the lookAt axis

Converting Camera to Canonical Form

Our camera is parameterized by three vectors
• lookFrom, lookAt, and vUp

We want to transform into canonical camera position
1. translate lookFrom to the origin — translate by –lookFrom
2. rotate lookAt−lookFrom to the z axis

3. rotate about z so that vUp lies inside the y-z plane

Axis:
Angle: where

()

sin (/)L Lθ −1

= − ×

= = −

u z

u z

lookAt lookFrom
lookAt lookFrom

OpenGL Transformation Matrices

OpenGL maintains two different matrices
• one to hold the camera projection matrix
• and one to hold everything else
• select “current matrix” with glMatrixMode(which)

– which is GL_MODELVIEW or GL_PROJECTION

glFrustum() and friends multiply the current matrix
• just like glTranslate(), glScale(), glRotate()

Vertices are transformed in the following manner

Model-view Projection Perspective division

OpenGL Viewing Transformations

Specify camera configuration with
gluLookAt(ex, ey, ez, ax, ay, az, ux, uy, uz)

These are our three camera vectors
• lookFrom (ex, ey, ez)
• lookAt (ax, ay, az)
• vUp (ux, uy, uz)

Typical Transformation Setup:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(fovy, aspect, zNear, zFar);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookat(ex, ey, ez, ax, ay, az, 0, 1, 0);

Demo

See “Links” web page for link to OpenGL tutors

